РД 31.31.55-93. 
ПРОВЕРКА УСТОЙЧИВОСТИ МАССИВА ГРУНТА, ОБЕСПЕЧИВАЮЩЕГОАНКЕРНОЕ КРЕПЛЕНИЕ СООРУЖЕНИЯ ТИПА БОЛЬВЕРК

РД 31.31.55-93. ПРОВЕРКА УСТОЙЧИВОСТИ МАССИВА ГРУНТА, ОБЕСПЕЧИВАЮЩЕГОАНКЕРНОЕ КРЕПЛЕНИЕ СООРУЖЕНИЯ ТИПА БОЛЬВЕРК
Инструкция по проектированию морских причальных и берегоукрепительных сооружений

      Стройка - Главная Написать нам
 
 
ПК Инфоплюс-смета Сварка - документы Бизнес-планы Исследования Тендеры  
 

 

 

 

 

 

 

Случайно выбранные документы:
ПБ 08-622-03 - Правила безопасности для газоперерабатывающих заводов и производств

 

 

 

Сварка ->  Строительные конструкции ->  РД 31.31.55-93 -> 

 

 

ПРОВЕРКА УСТОЙЧИВОСТИ МАССИВА ГРУНТА, ОБЕСПЕЧИВАЮЩЕГО АНКЕРНОЕ КРЕПЛЕНИЕ СООРУЖЕНИЯ ТИПА БОЛЬВЕРК

 

1. Устойчивость массива грунта АВСД (черт. 1), расположенного между лицевой (экранирующей) стойкой больверка и анкерной опорой, на плоскости скольжения АВ обеспечивается при выполнении условия

,                                                               (1)

 

где glc, gc gп - коэффициенты, определяемые в соответствии с требованиями раздела 4 настоящей Инструкции;

Ra - расчетная анкерная реакция, кН/м, полученная статическим расчетом по пп. 8.43-8.44 настоящей Инструкции;

Rм - равнодействующая горизонтальных сил, кН/м, действующих на массив грунта АВСД (п. 3 настоящего приложения).

 

2. Плоскость скольжения АВ (см. черт. 1) следует проводить через точку, расположенную на уровне условного пролета лицевой (экранирующей) стенки, и подошву анкерной опоры.

Условный пролет стенки больверка определяется статическим расчетом по программе BOMAJN.

 

 

Черт. 1.

 

3. Равнодействующую горизонтальных сил R, следует определять по формуле

 

Rм = Еа (SGi - ci bi tgq) tg (q - j) + Sсi bi - Еa0,                                  (2)

 

где Еа - горизонтальная составляющая активного давления грунта со стороны лицевой стенки, кН/м;

Gi - вес элемента массива грунта, кН/м, определяемый с учетом п. 4 настоящего приложения;

ci, ji - соответственно удельное сцепление, кПа, и угол внутреннего трения грунта, град, в основании элемента массива грунта;

bi - ширина рассматриваемого элемента массива грунта, м;

q - угол наклона плоскости скольжения к горизонтали, град;

Еa0 - горизонтальная составляющая активного давления грунта со стороны анкерной опоры, кН/м.

 

4. Массив грунта АВСД следует делить на элементы массива таким образом, чтобы основание каждого элемента было однородным (см. черт. 1).

Вес элемента массива грунта Gi в тех случаях, когда угол наклона плоскости скольжения в основании массива к горизонтали q больше угла внутреннего трения грунта ji, следует определять с учетом эксплуатационных нагрузок на территорий причала.

 


Приложение 8

(рекомендуемое)

 

ОПРЕДЕЛЕНИЕ ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК ЛЬДА

 

Прочностные характеристики речного и морского льда для арктических районов допускается определять по формуле

 

R = 0,8 k1 k2 R1,

 

где k1 - коэффициент, учитывающий структуру льда, определяемый по табл. 1;

k2 - коэффициент, учитывающий плотность льда и приложение нагрузки, принимаемый по табл. 2;

R1 - прочностные характеристики льда в зависимости от солености и температуры, кПа, определяемые по графикам на черт. 1, 2, 3.

 

Таблица 1.

 

Значение коэффициента k1

 

Структура льда

Условия образования льда

Коэффициент k1

при сжатии

при изгибе

при срезе

Шестовато-игольчатая или волокнистая

Пресный лед: устьевые участки рек, пресные водоемы

1,0

1,0

1,0

Морской лед: дрейфующий лед, припайный лед в зоне стационарных полыней

1,0

1,0

1,0

Зернистая

Пресный лед: во всех случаях, кроме указанных выше

0,5

0,5

0,9

Морской лед: при течениях, колебаниях температуры и солености, при ветрах, при образовании торосов

0,5

0,5

0,9

 

 

Черт. 1.

 

 

Черт. 2.

 

 

Черт. 3. Зависимость прочности льда на срез от его температуры и солености

 

Значение коэффициента k2

 

Приложение нагрузки

Коэффициент k2

при сжатии

при изгибе

при срезе

Перпендикулярно поверхности замерзания

1,2

1,0

1,0

Параллельно поверхности замерзания

1,0-0,8*

1,0

1,0

 

Примечание*.

Большее значение ki принимается для льда зернистой структуры.

 


Приложение 9

(рекомендуемое)

 

ДИНАМИЧЕСКИЕ РАСЧЕТНЫЕ СХЕМЫ МОРСКИХ ПРИЧАЛЬНЫХ СООРУЖЕНИЙ

 

1. В динамическую расчетную схему сооружений распорного типа по методу конечных элементов (МКЭ) следует включать сооружение и окружающий его грунт засыпки и основания. Рекомендуемое положение границ расчетной схемы приведено на черт. 1.

Положение нижней границы следует принимать совпадающим с кровлей коренных пород - скальных, полускальных, мергелей, сцементированных галечников, либо с кровлей вечной мерзлоты (черт. 2).

Если коренные породы находятся от поверхности причала на расстоянии, превышающем двойную высоту стенки Н, то положение нижней границы расчетной схемы следует принимать от поверхности причала на расстоянии, равном двойной высоте стенки, а для больверков - на двойной глубине забивки стенки Н3=Н2 (см. черт. 2).

Прослойки слабого грунта в основании сооружения следует включать в расчетную схему, увеличивая при необходимости расстояние, Н1 до нижней границы.

Связи, накладываемые по границе в расчетной схеме, приведены на черт. 1 и 2.

Гравитационные подпорные стенки (из кладки массивов, массивов-гигантов, оболочек большого диаметра), грунты засыпки и основания следует представлять континуальными элементами (черт. 3, 4 и 5).

 

 

Черт. 1. Положение границ и граничные условия в расчетной схеме

 

 

Черт. 2. Пример расчетной схемы на скальном основании

 

 

Черт. 3. Динамическая расчетная схема сооружения гравитационного типа

а - поперечный разрез причала из оболочки большого диаметра; б - расчетная схема МКЭ;

1 - оголовок; 2 - элементы сооружения; 3, 4 - грунты засыпки; 5 - каменная постель, 6 - грунт основания

 

 

Черт. 4. Динамическая расчетная схема стенки уголкового типа с контрофорсом

а - поперечный размер причала; б - расчетная схема МКЭ; 1 - плита основания; 2 - лицевая стенка, 3, 4 - контрофорс; 5 - грунт основания; 6, 7 - грунт засыпки

 

 

Черт. 5. Динамическая расчетная схема экранированного больверка

а - поперечный разрез причала; б - расчетная схема МКЭ; 1 - лицевая и экранирующая стенки; 2 - оголовок; 3 - анкер; 4 - анкерная стенка; 5-7 - грунт засыпки, 8 - грунт основания

Гибкие элементы сооружения: лицевые и анкерные стенки, анкера, плиты основания уголковых стенок, боковые стенки контрфорсов, экранирующие стенки больверков следует представлять стержневыми элементами (см. черт. 4 и 5).

 

Анкерные тяги в расчетной схеме достаточно соединять с грунтовыми элементами в двух точках: в место крепления с лицевой стенкой и в место крепления к анкерной плите, либо к плите основания в уголковых стенках.

Узлы концентрации масс следует размещать равномерно по сооружению, по возможности совмещать с узлами пересечения конструктивных элементов и относить к узлу массу, ограниченную половинами смежных пролетов между узлами.

В пределах массивных стенок гравитационных сооружений (см. черт. 3) должны сохраняться моменты инерции вращения, соответствующие естественному распределению масс; массы окружающего стенку грунта должны располагаться чаще в зонах характерных смещений грунта (зоны активного и пассивного давления) и реже у границ расчетных схем.

Величины сосредоточенных масс Mк в пределах гравитационных стенок должны определяться при сохранении условий

 

, ,                                                   (1)

 

где Мст - масса всей стенки, т;

Мк - масса, сосредоточенная в k-м узле стенки, т;

nст - количество сосредоточенных масс стенки, принимаемое

 

3 < nст < 5

 

Инерционное влияние воды, контактирующей с подпорной стенкой со стороны акватории, следует учитывать в виде присоединенной массы по формуле

 

mb = rb h m Aст,                                                               (2)

 

где rb - плотность воды, т/м3;

h - глубина воды у сооружения, м;

m - безразмерный коэффициент, зависящий от соотношения z/h, определяемый по графикам на черт. 6, где кривая 1 - для гравитационных стенок, 2 - для больверков;

z - расстояние от поверхности воды до рассматриваемой точки напорной грани, м;

Aст - площадь контактирующего с водой участка стенки.

 

В расчетных схемах МКЭ массы должны иметь одну степень свободы - перемещение Vк в направлении сейсмического воздействия, где k - номер массы.

Масса грузов на причале сосредотачивается в верхних узлах расчетной схемы по правилу грузовых площадей и учитывается в размере 0,8 от расчетной.

2. Динамическую расчетную схему безраспорного сооружения гравитационного типа (в виде одиночных опор причалов мостового типа либо оградительных сооружений), допускается представлять в виде жесткого блока на безинерционном упругом основании (черт. 7).

 

 

Черт. 6. Зависимости коэффициента m от соотношения z/h:

1 - для гравитационных стенок; 2 - для больверков.

 

 

Черт. 7. Динамическая расчетная схема сооружений гравитационного типа на безинерционном основании

a - поперечный разрез оградительного сооружения из оболочек большого диаметра;

б - расчетная схема в виде жесткого диска на безинерционном основании

 

Безинерционным считается основание под каменной постелью, состоящее из грунтов I и II категории по сейсмическим свойствам в соответствии с указаниями СНиП II-7-81.

Инерционными характеристиками жесткого блока должны являться масса Md и момент инерции массы qd относительно центральной горизонтальной оси, совпадающей с продольной осью сооружения.

Жесткие блоки гравитационных сооружений должны обладать двумя степенями свободы: перемещением V центра масс блока в направлении сейсмического воздействия и углом поворота a в расчетной плоскости.

Жёсткостные характеристики грунтов основания рекомендуется представлять с помощью коэффициентов жесткости Сx и Сz

Сa по формулам

 

Сx = 0,7 Сz,                                                                 (3)

 

;                                                 (4)

 

,                                                (5)

 

где С0 - коэффициент жесткости (кН/м3) при удельных давлениях на основание s0=2 кН/м2, D=1 м;

bп - ширина подошвы (размер в плоскости колебаний), м;

Lп - длина подошвы (размер в перпендикулярном к плоскости колебаний направлении), м;

Ап - площадь подошвы, м2;

s - среднее статическое напряжение по подошве (без учета гидростатического взвешивания), кН/м2.

 

Если Lа ³ 3bп, то в формулах (3) - (5) следует принимать Lп=3b.

 

Таблица.

 

Приближенные значения коэффициента С0

 

Характеристика основания

С0, кН/м3

Каменная постель на слабых илистых грунтах

1500-3000

Каменная постель на песчаных и глинистых грунтах средней плотности (с включением ракуши, гравия)

3000-6000

Каменная постель на плотных грунтах (гравий, галька, песок плотный с включением гравия и ракуши)

б000-10000

 

Примечание. В таблице приведены рекомендации для каменной постели средней толщины hп при hп: b=0,25+040; при hп: b<0,25 значения С0 принимаются по нижней границе; при hп: b > 0,40 значения С0 принимаются по верхней границе интервала значений в таблице.

 

3. Динамические расчетные схемы сооружений эстакадного типа, предназначенные для определения сейсмических нагрузок, следует представлять (черт. 8);

 

 

Черт. 8. Динамические расчетные схемы сооружений эстакадного типа

а, б, в - верхнее строение в виде жестких дисков; г - верхнее строение в виде деформируемой конструкции.

 

В зависимости от наличия связей между секциями, либо в виде цепочки секций (см. черт. 8а), либо в виде отдельной секции (см. черт. 8б);

в зависимости от наличия высоты надстроек, либо без надстроек (см. черт. 8 а, б), либо с надстройками (см. черт. 8в, г);

в зависимости от деформативности верхнего строения секции в горизонтальной плоскости, либо в виде жесткого диска (см. черт. 8а, б, в), либо в виде деформируемой конструкции (см. черт. 8г), опирающихся на упругие свайные опоры.

Верхнее строение секции следует представлять в виде жесткого диска, если параметры секции удовлетворяют неравенству

,                                                                 (6)

 

где Кvv - коэффициент горизонтальной жесткости свайного поля при смещении секции, кН/м;

L - длина секции (плиты), м;

EJ - изгибная жесткость конструкции верхнего строения в горизонтальной плоскости, кН/м2. Коэффициенты жесткости сварного поля определяются по формулам

 

                                                (7)

 

где Кaa - коэффициент горизонтальной жесткости свайного поля при повороте секции, кНм;

Кag=Кga - смешанный коэффициент жесткости, характеризующий наличие эксцентриситета е по длине между центром массы секции М, располагающемся в начале координат и центром жесткости свайного поля R (черт. 9), кН;

Нрх, Нру, Нрa - коэффициенты жесткости р-й сваи соответственно при смещении ее в направлении осей х и у и при повороте в горизонтальной плоскости, кН/м и кНм;

хр, ур координаты р-й сваи относительно центра масс секции (х - в направлении сейсмического воздействия, у- в перпендикулярном направлении), м;

rсв - число свай в секции.

 

При определении массы секции кроме массы верхнего строения и оборудования следует учитывать массу временных грузов на причале в размере 0,8 от расчетной и приведенную к уровню плиты массу свай Dmсв с присоединенной к ним массой воды Dm

 

Dmсв = Ксв mсв Lсв,                                                             (8)

 

,                                                           (9)

 

где Ксв - безразмерный коэффициент, определяемый по графику на черт, 10 в зависимости от величины iрu2/iсв;

mсв - погонная масса сваи, т;

Lсв, L*св - соответственно расчетная длина сваи и длина се участка, находящегося в воде, м;

dсв - диаметр или сторона поперечного сечения сваи, м;

iрu2 - погонная жесткость ригеля, МН×м;

iсв - погонная жесткость сваи, МН×м;

 

 

Черт. 9. Схема перемещений жесткой плиты ростверка

 

 

Черт 10. Зависимость коэффициента К от соотношения iриг/i.

 

Для причальных сооружений эстакадного типа учет эксцентриситета между центром масс секции и центром жесткости свайного поля (см. черт. 9) является обязательным. При этом среднеквадратическое отклонение случайного эксцентриситета следует принимать не менее 0,015L.

Каждый диск должен обладать двумя степенями свободы: перемещением Vчс центра массы секции в направлении сейсмического воздействия и углом поворота aчс в горизонтальной плоскости, где чс - номер секции.

В расчетных схемах МКЭ каждая сосредоточенная масса обладает одной степенью свободы - смещением в направлении сейсмического воздействия.

В пределах длины деформируемой в горизонтальной плоскости секции число узлов концентрации масс следует принимать не менее чр (чр - количество свайных рядов) и по возможности совмещать их с узлами пересечения конструктивных элементов.

Динамическую расчетную схему устойчивости подпричального откоса следует представлять в дискретном виде МКЭ (см. черт. 11)

 

 

Черт. 11. Динамическая расчетная схема подпричального откоса набережной

а - поперечный разрез причала; б - расчетная схема МКЭ для расчетов устойчивости; 1 уголковая стенка; 2 - грунт основания, 3 - грунт откоса; 4 - грунт засыпки

 

Границы расчетной схемы следует назначать за пределами зоны возможных кривых скольжения. Остальные требования см. п. 1.

 


Приложение 10

(рекомендуемое)