СН 550-82. 
Глубина заложения трубопровода, Н, м

СН 550-82. Глубина заложения трубопровода, Н, м
Инструкция по проектированию технологических трубопроводов из пластмассовых труб

      Стройка - Главная Написать нам
 
 
ПК Инфоплюс-смета Сварка - документы Бизнес-планы Исследования Тендеры  
 
 

 

 

 

 

Случайно выбранные документы:
ПБ 11-542-03 - Правила безопасности в доменном производстве.

 

 

 

Сварка ->  Общие документы ->  СН 550-82 -> 

 

 

Глубина заложения трубопровода, Н, м

Коэффициент вертикального давления КГР для грунтов

Глубина заложения трубопровода, Н, м

Коэффициент вертикального давления КГР для грунтов

Пески, супеси, суглинок твердый

Суглинок. пластинчатый, глина твердой консистенции

Пески, супеси, суглинок твердый

Суглинок пластинчатый, глина твердой консистенции

0,5

0,82

0,85

5,0

0,43

0,46

1,0

0,75.

0,78

6,0

0,37

0,40

2,0

0,67

0,70

7,0

0,32

0,34

3,0

0,55

0,58

8,0

0,29

0,32

4,0

0,49

0,52

 

 

 

 

В формуле (36): РГР—параметр, характеризующий жесткость засыпки, МПа (кгс/см2), рассчитываемый по соотношению

                                           (37)

 

РЛпараметр, характеризующий жесткость трубопровода, МПа (кгс/см2), рассчитываемый по формуле

                                            (38)

В формулах (37) и (38): ЕГР —модуль деформации грунта засыпки, принимаемый в зависимости от степени уплотнения грунта: для песчаных грунтов—от 8,0 до 16,0 МПа (от 80 до 160 кгс/см2), для супесей и суглин-ков—от 2,0 до 6,0 МПа (от 20 до 60 кгс/см2), для глин—от 1,2 до 2,5 МПа (от 12 до 25 кгс/см2); Е —модуль ползучести материала труб, МПа (кгс/см2), определяемый в соответствии с требованиями п. 5.4.

5.45. Расчетная нагрузка на трубопровод от транспорта Н/м (кгс/см) должна определяться по формуле

                                             (39)

где hтр — коэффициент перегрузки от транспортных нагрузок, принимаемый по табл. 10; qНТР—нормативное равномерно распределенное давление от транспорта, Н/м2 (кгс/см2), определяемое в соответствии с п. 5.13;. Д—наружный диаметр трубопровода, м (см).

 5.46. Расчетная нагрузка на трубопровод от равномерно распределенной нагрузки на поверхности засыпки QР, Н/м (кгс/см), должна определяться по формуле

                                        (40)

где nP — коэффициент перегрузки от нагрузок на поверхности грунта, принимаемый по табл. 10; qP —интенсивность равномерно распределенной нагрузки, Н/м2 (кгс/см2); Д— наружный диаметр трубопровода, м (см);  КН—коэффициент вычисляемый по формуле (36).

5.47. Расчетные нагрузки на основание траншеи от массы трубопровода и транспортируемого вещества . должны рассчитываться по формулам (3) и (6) с учетом соответствующих коэффициентов перегрузки.

5.48. Расчетную нагрузку, вызывающую всплытие трубопровода, от давления грунтовых вод QГ.В, Н/м (кгс/см) следует определять по Формуле

                                           (41)

где nГ.В— коэффициент перегрузки от гидростатического давления грунтовых вод, принимаемый по табл. 10: qНГ.В— нормативная нагрузка от гидростатического давления грунтовых вод, Н/м (кгс/м), определяемая в соответствии с п. 5.9.

5.49. При укладке трубопроводов в малосвязных грунтах, не обеспечивающих надлежащего защемления его грунтом, и при отсутствии компенсации температурных удлинений необходимо предусматривать мероприятия, препятствующие выпучиванию трубопровода: увеличивать глубину заложения трубопровода (до 50%), избегать укладки криволинейных участков с малым радиусом изгиба и пр.

 

Данный раздел утратил силу

 

6      ТЕПЛОВАЯ ИЗОЛЯЦИЯ

 

6.1. Необходимость применения изоляции для трубопроводов следует устанавливать в каждом конкретном случае в зависимости от физико-химических свойств материалов труб и транспортируемого вещества, места и способа прокладки трубопровода, требований технологического процесса, техники безопасности,  а также в соответствии с нормированной плотностью теплового потока.

6.2. При проектировании тепловой изоляции для трубопроводов следует, кроме требований настоящей Инструкции, руководствоваться требованиями главы СНиП по проектированию тепловых сетей, Инструкции по проектированию тепловой изоляции оборудования и  трубопроводов промышленных предприятии, а также другими нормативными документами, утвержденными в установленном порядке.

6.3. Конструкцию и материал тепловой изоляции следует проектировать с учетом несущей способности трубопроводов и деформации поперечного сечения труб.

6.4. Конструкцию тепловой изоляции следует проектировать:

для трубопроводов, прокладываемых на отдельно стоящих опорах и подвесках такую же, как и для стальных трубопроводов—по действующей нормативной документации и в соответствии с типовыми деталями тепловой изоляции промышленного оборудования и трубопроводов;

для одиночных трубопроводов, прокладываемых на сплошном основании, изготовленном в виде желоба из профильного металла (уголков, швеллеров и т.д.) — в виде изоляции, покрывающей трубопровод совместно с основанием;

для трубопроводов при их групповой прокладке на сплошном основании, изготовленном в виде сплошного пастила — в виде изоляции, прикрепляемой к настилу (при этом настил не изолируется).

При групповой прокладке пластмассовых трубопроводов в обогреваемом коробе тепловая изоляция должна выполняться на стенках короба.

6.5. При креплении отдельных элементов теплоизоляционных конструкций на трубопроводе под бандажами  и проволочными стяжками следует устанавливать прокладки из асбестового картона, асбестовой ткани или нескольких слоев стеклоткани, брезента.

6.6. Толщина теплоизоляционного слоя должна определяться по формулам, приведенным в Инструкции по проектированию тепловой изоляции оборудования и трубопроводов промышленных предприятий. При этом должно дополнительно учитываться сопротивление теплопередачи материала стенок пластмассовых труб (rm) по формуле

                             (42)

где d—внутренний диаметр изолируемого трубопровода, м; Д--наружный диаметр изолируемого трубопровода, м; lmтеплопроводность

 материала стенки пластмассовой трубы определяемая по табл. 14.

 

 

Таблица 14.

 

Материал стенки

Плотность rm,

кг/м3

Теплопроводность (коэффициент теп- лопроводности) lm Вт/м.°С (ккал/м×час °С)

Удельная теплоемкость Сm, кДж (кг, °С/ккал/кг °С

ПВХ

1400

0,17(0,15)

2,1(0,5)

ПНД

950

0,42(0,36)

2,5(0,6)

ПВД

920

0,35(0,3)

2,5(0,6)

ПП

910

0,23(0,2)

2,1(0,5)

 

Значение Кredкоэффициента, учитывающего дополнительный поток тепла через опоры, подвески, фланцевые соединения и арматуру, должно приниматься разным:

при прокладке на опорах и подвесках—1,7; 

при прокладке одиночных трубопроводов, изолируемых совместно с основанием -1,2;

при групповой прокладке трубопроводов на  сплошном настиле — 2.

Значение плотности и удельной теплоемкости материалов стенок труб следует принимать по табл. 14.

При расчетах изоляции одиночных трубопроводов совместно с основанием вместе величины диаметра трубопровода с учетом изоляции (di), в расчетные формулы следует подставлять величину приведенного диаметра изолируемого трубопровода di,red, определяемого из выражения

                                                (43)

 

где U—внутренний периметр изоляции трубопровода, м,

6.7. Толщина  теплоизоляции, предусматриваемая на стенках обогреваемого короба, внутри которого располагается несколько трубопроводов, определяется из уравнения теплового баланса. При этом расчетная формула выводится для  каждого конкретного случая прокладки трубопровода в коробе.

6.8. Отвод статического электричества от металлического покрытия тепловой изоляции должен осуществляться путем присоединения покрытия к контуру заземления согласно п. 4.17.

 

7      ИСПЫТАНИЕ И ОЧИСТКА

 

7.1. При испытании и очистке трубопроводов следует руководствоваться указаниями проекта, главы СНиП технологического оборудования и требованиями настоящей Инструкции.

7.2. Испытание трубопроводов следует производить при температуре окружающего воздуха не ниже:

минус 15°С, для трубопроводов из полиэтилена;

0°С, для трубопроводов из поливинилхлорида и полипропилена.

7.3. Испытание трубопроводов следует производить не ранее чем через 24 ч после выполнения сварных и клеевых соединений трубопроводов.

7.4. Допускается промывка пластмассовых трубопроводов водой или другими веществами с температурою не более  60 °С. Продувка трубопроводов паром не допускается.

 

8. МАТЕРИАЛЫ И ИЗДЕЛИЯ

 

8.1. При выборе материалов и изделии для трубопроводов следует, кроме требований настоящей Инструкции, руководствоваться также указаниями отраслевых и межотраслевых нормативных документов, утвержденных в установленном порядке.

8.2. Материалы и технические изделия, предусматриваемые в проектах, должны соответствовать требованиям стандартов и технических условий, утвержденных в установленном порядке.

8.3. Материалы и технические изделия, допускаемые к применению для строительства трубопроводов из пластмассовых труб приведены в прил. 3.

Допускается применение материалов и изделий по ГОСТ и ТУ, не включенных в прил. 3, при условии, что показатели их качества, в т. ч. прочностные характеристики, химическая стойкость, соответствуют требованиям настоящей Инструкции и обеспечивают надежную и безопасную эксплуатацию трубопровода.

8.4. Пластмассовые соединительные детали для трубопроводов должны быть изготовлены из того же материала, что и соединяемые пластмассовые трубы. При этом тип соединительных следует принимать, как правило, одинаковым с типом соединяемых труб. Не допускается применять соединительные детали типа ниже, чем тип соединяемых труб.

8.5. Соединительные детали для трубопроводов следует принимать, как правило, заводского изготовления в соответствии с действующей  технической документацией на их производство. Допускается использование соединительных детален, изготовленных в трубозаготовительных мастерских с применением специализированного оборудования и оснастки, при условии, что эти детали выдерживают те же испытания, что и соединительные детали, изготовленные в заводских условиях.

8.6. При изготовлении соединительных деталей в трубозаготовительных мастерских следует выполнять:

равнопроходные прямые тройники и сегментные отходы, изготовленные из пластмассовых труб, способом контактной стыковой сварки, из труб на один тип выше, чем тип труб, для соединения которых они предназначены;

равнопроходные косые тройники и неравнопроходные тройники, изготавливаемые из пластмассовых труб способом контактной стыковой сварки, из труб на два типа выше, чем тип труб, для соединения которых они предназначены;

гнутые отводы, полученные без образования складок и гофр, и переходы, формуемые путем уменьшения диаметра трубы, из которой они изготовляются, из труб того же типа, что  и соединяемые трубы.

Допускается применение металлических соединительных деталей в зависимости от физико-химических свойств транспортируемых веществ.

8.7. Запорную, регулирующую и другую арматуру, устанавливаемую на трубопроводах, следует выбирать по стандартам, каталогам, техническим условиям в соответствии с ее назначением по транспортируемому веществу и параметрам, с учетом условий эксплуатации, требований правил по технике безопасности и отраслевых нормативных документов. Применение арматуры, не предназначенной для определенных веществ и параметров, допускается при условии согласования, такого решения с разработчиком арматуры.

8.8. Класс герметичности затвора для запорной арматуры следует определять по ГОСТ 9544—75. Для трубопроводов групп А и Б должна применяться арматура 1 класса герметичности.

8.9. Арматура, имеющая плоскую уплотнительную поверхность, должна подсоединяться к трубопроводу с помощью металлических фланцев, устанавливаемых на приварных втулках или на утолщенных буртах трубопровода.

Арматура, имеющая уплотнительную поверхность типа шип-паз или выступ-впадина, должна присоединяться к трубопроводу через переходные втулки, изготовляемые из сталей, материалы которых должны обеспечивать падежную и безопасную эксплуатацию трубопроводов.

8.10. Фланцы для трубопроводов следует применять по стандартам или отраслевым нормативным документам, утвержденным в установленном порядке. При выборе фланцев следует также руководствоваться прил. 4.

 8.11. Размеры прокладок следует принимать по ГОСТ 15180—70 и отраслевым нормативным документам, утвержденным в установленном порядке.

 Материал прокладок следует принимать с учетом химических свойств транспортируемых веществ по отраслевым нормативным документам, утвержденным в установленном порядке.

 8.12. При выборе материалов для опор и подвесок, расположенных на открытом воздухе или в неотапливаемых помещениях, необходимо учитывать среднюю температуру наиболее холодной пятидневки согласно главе СНиП по строительной климатологии и геофизике.

8.13. Марки стали для опорных конструкций (кронштейны, постаменты, траверсы и т. п.) и крепления сплошного основания, а также крепежные детали к ним следует принимать в соответствии с главой СНиП по проектированию стальных конструкций.

8.14. Материалы и изделия, применяемые для тепловой изоляции, должны выбираться по действующим стандартам и техническим условиям и иметь минимальную массу. Для основного теплоизоляционного слоя должны применяться теплоизоляционные материалы со средней плотностью не более 100 кг/м3 и теплопроводностью не выше 0,05  определенной при средней температуре теплоизоляционного слоя 25°С и влажности, указанной в соответствующих стандартах или технических условиях на эти материалы.

8.15. Материалы и изделия, применяемые для тепловой защиты трубопроводов из пластмассовых труб, должны быть несгораемыми или трудносгораемыми. Для тепловой изоляции трубопроводов, транспортирующих активные окислители, и трубопроводов, прокладываемых в помещениях, содержащих активные окислители, следует применять холсты из супертонкого штапельного волокна, маты и вату из супертонкого стекловолокна без связующего СТВ и другие материалы, в которых содержание органических и горючих веществ не превышает 0,45% по массе.

При выборе теплоизоляционных изделий и покровного слоя следует также руководствоваться требованиями главы СНиП по проектированию тепловых сетей, а также отраслевыми и межотраслевыми нормативными документами по этому вопросу, утвержденными в установленном порядке.

 


ПРИЛОЖЕНИЕ 1

(рекомендуемое)

 

Химическая стойкость пластмассовых труб

 

В таблице приложения принята следующая оценка химической стойкости материала труб:

С—стоек (в веществе данной концентрации при данной температуре не происходит химического разрушения пластмасс);

О — относительно стоек (в данном веществе происходит частичная потеря несущей способности труб и трубы должны применяться с повышенным запасом прочности);

Н — нестоек (применение труб недопустимо в данном веществе). Знак «—» означает, что данные отсутствуют.

 

 

 

 

 

 

 

 

           
Разместить сайт в каталоге
Разместить статью в каталоге