РД 34.17.310-96. 
Рис. 13.3. Зона перехода от штуцера кколлектору (относится к рис. 13.2)

РД 34.17.310-96. Рис. 13.3. Зона перехода от штуцера кколлектору (относится к рис. 13.2)
Сварка, термообработка и контроль при ремонте сварных соединений трубных систем котлов и паропроводов в период эксплуатации.

      Стройка - Главная Написать нам
 
 
ПК Инфоплюс-смета Сварка - документы Бизнес-планы Исследования Тендеры  
 

 

 

 

 

 

Случайно выбранные документы:
РД 08-296-99 - Положение об организации технадзора за соблюдением проектных решений и качеством стр-ва, кап ремонта и реконструкц на объектах магистральных

 

 

 

Сварка ->  Котельное оборудование ->  РД 34.17.310-96 -> 

 

 

 

Основной является конструкция штуцерного соединения без остающегося подкладного кольца. Допускается конструкция с подкладным цилиндрическим кольцом, которое после термического отдыха сварного соединения рекомендуется удалять механическим способом (шлифованием, фрезерованием). Подкладное кольцо может быть изготовлено точеным или вальцованным из полосы или трубной заготовки; материал кольца - сталь 12Х1МФ или 20.

 

Рис. 13.3. Зона перехода от штуцера к коллектору (относится к рис. 13.2)

 

13.6.2. Усиливающие наплавки на штуцер и коллектор наносят кольцевыми валиками шириной 12-16 мм и высотой 3-5 мм в два слоя (рис. 13.4 и 13.5). Сварку выполняют электродами диаметром 3 мм силой тока 90-110 и 100-120 А для наплавки на штуцер и коллектор соответственно и с подогревом 200-250 и 250-300°С для штуцера и коллектора соответственно. Способ нагрева любой. Регистрация температур - с помощью термокарандашей или термопар с приборами (милливольтметром, потенциометром). После сварки поверхность наплавки подвергают механической обработке (шлифованию) до получения требуемых размеров и форм (рис. 13.4 и 13.5; табл. 13.2). Качество сварки оценивается по результатам макроанализа визуальным способом с применением лупы 4-7-кратного увеличения поверхности наплавки травленной 15% водным раствором азотной кислоты; нормы допустимых дефектов соответствуют РД 34 15.027-93.

 

Рис. 13.4. Схема нанесения усиливающей наплавки электродами Э-09Х1М на тело штуцера:

а - подготовленный под наплавку штуцер;

б - последовательность двухслойной наплавки кольцевыми валиками;

в - форма усиливающей наплавки после механической обработки (размеры см. в табл. 13.2)

 

 

Рис. 13.5. Схема нанесения усиливающей наплавки электродами Э-09Х1М на тело коллектора

 

13.6.3. В собранных под сварку деталях кольцевой зазор в корневой части должен составлять 3-4 мм для штуцера без подкладного кольца (рис. 13.6) и 5-8 мм - для штуцера с подкладным цилиндрическим кольцом (рис. 13.7). Собранные элементы скрепляют двумя прихватками длиной по 40-50 мм и высотой 4-6 мм, располагающимися в диаметрально противоположных местах по периметру кольцевого зазора. Прихватки выполняют электродами диаметром 3 мм, ток при сварке - 90-110 А с подогревом деталей при температуре 250-300°С. Способ нагрева любой; контроль температур осуществляют согласно рекомендациям п. 13.6.2 настоящего РД.

 

Рис. 13.6. Собранные под сварку элементы штуцерного соединения без подкладного остающегося кольца. Усиливающие наплавки выполнены электродами Э-09Х1М

 

Рис. 13.7. Собранные под сварку элементы штуцерного соединения с подкладным цилиндрическим кольцом. Усиливающие наплавки выполнены электродами Э-09Х1М

 

13.6.4. Угловой шов выполняется многослойным способом (рис. 13.8) кольцевыми валиками шириной по 12-18 мм и высотой 6-8 мм с использованием электродов типа Э-09Х1М диаметром 3 и 4 мм на режимах тока 100-120 и 140-180 А соответственно; заполнение разделки обеспечивается по всему сечению с получением усиления шва высотой около 15-20 мм.

 

Рис. 13.8. Схема последовательности заполнения разделки и усиления углового шва кольцевыми валиками с помощью электродов Э-09Х1М

 

13.6.5. При сварке должен быть обеспечен предварительный и сопутствующий подогрев свариваемых деталей при температуре 250-300°С. Зона равномерного подогрева включает полностью тело штуцера и кольцевой участок коллектора шириной 400-500 мм по всему периметру с расположением в центре привариваемого штуцера. Способ подогрева любой: индукционный, электропечной или газопламенный. Технология установки и применения нагревательных устройств должна обеспечиваться в соответствии с рекомендациями РД 34 15.027-93. Температура подогрева регистрируется с помощью самопишущего прибора от 7 термопар типа ХА, установленных на штуцере (две термопары) и коллекторе (пять термопар) на расстоянии 30-40 мм от края усиливающих наплавок (рис. 13.9).

 

Рис. 13.9. Схема размещения термопар (ТП) для регистрации температур подогрева при выполнении усиливающих наплавок и углового шва и при проведении термического отдыха сварного соединения. Усиливающая наплавка (УН) воротникового типа и угловой шов выполнены электродами Э-09Х1М

 

13.6.6. По окончании сварки углового шва проводится термический отдых сварного соединения по режиму 250-300°С, 1 ч с регистрацией температуры самопишущим прибором от 7 термопар (рис. 13.9).

13.6.7. Усиление углового шва должно быть обработано механическим способом (шлифованием) до получения вогнутой поверхности с радиусом скругления 40-45 мм (табл. 13.2) и плавным переходом к усиливающим наплавкам; высота углового шва должна составлять около 20 мм (рис. 13.10). Внутренняя поверхность сварного соединения должна быть обработана механическим способом (шлифованием, фрезерованием) до получения ровной поверхности корневой части шва заподлицо с внутренней поверхностью штуцера. Подкладное кольцо рекомендуется удалять механическим способом (шлифованием, фрезерованием).

 

 

Рис. 13.10. Форма углового шва (УШ) с усиливающими наплавками воротникового типа после механической обработки штуцерного сварного соединения коллектора

 

13.6.8. Сварное соединение подвергают ультразвуковой дефектоскопии (или радиографии) по всему периметру сварного шва и визуальному контролю всей поверхности сварного шва и усиливающих наплавок, предварительно протравленных 15% водным раствором азотной кислоты (или МПД вместо визуального контроля). Дополнительно проводят спектральный анализ металла наплавок и сварного шва.

Качество сварного соединения и соответствие состава легирующих элементов в металле шва и наплавок оценивают по нормативным требованиям РД 34 15.027-93.

13.7. Технология приварки штуцеров аустенитными электродами.

13.7.1. Конструкция нового штуцерного соединения включает угловой шов с усиливающими наплавками и по форме подобна указанной на рис. 13.2 и 13.3. Основной является конструкция соединения без остающегося подкладного кольца; резервной - с подкладным кольцом, которое рекомендуется удалять механическим способом после сварки углового шва. Материалом подкладного кольца служит сталь 12Х1МФ или 20.

13.7.2. Усиливающие наплавки на штуцер и коллектор выполняются в один слой (рис. 13.11-13.13) аустенитными электродами (табл. 13.1) диаметром 3 мм на токовых режимах, указанных в табл. 13.3. На коллектор допускается наносить двухслойную наплавку. Процесс наплавки выполняется без подогрева. По окончании процесса сварки поверхность наплавки подвергается механической обработке (шлифованию) до получения требуемых размеров (рис. 13.11 - 13.13) и последующему визуальному контролю с оценкой качества по нормам РД 34 15.027-93 для сварных соединений перлитных сталей.

 

Таблица 13.3.Режимы сварки и наплавки аустенитными электродами при приварке штуцеров  -100 к коллекторам из стали 12Х1МФ

 

 

 

 

 

 

 

Технологическая операция

Тип электрода

Диаметр электрода, мм

Сила тока, А

Наплавка на штуцер и коллектор

Э-11Х15Н25М6АГ2

3

80-90

Э-08Н60Г7М7Т

3

75-85

Сварка углового шва и прихватка

Э-11Х15Н25М6АГ2

3

80-90

4

110-120

 

Примечание.

Выбор типа (и марки) электродов для наплавки проводят с учетом температуры эксплуатации штуцерных сварных соединений (табл. 4.1 и 13.1).

 

 

Рис. 13.11. Подготовка штуцера -100 под сварку углового шва без подкладного кольца аустенитными электродами:

а - подготовленный под наплавку штуцер;

б - расположение валиков наплавки;

в - поверхность наплавки после механической обработки

 

 

Рис. 13.12. Последовательность выполнения наплавки аустенитными электродами на вертикальный (а) и горизонтальный (б) штуцеры

 

 

Рис. 13.13. Подготовка поверхности коллектора под сварку углового шва аустенитными электродами:

 а - поверхность, подготовленная под наплавку;

б - расположение валиков наплавки (на примере однослойной наплавки);

в - поверхность наплавки после механической обработки:

для штуцеров  133х17 мм: =17-l8 мм, h=12-14 мм;

для штуцеров 108х10(11) мм: =10-11 мм, h=6-7 мм

 

13.7.3. Собранный под сварку штуцер должен иметь кольцевой зазор в корневой части, равный 2-3 мм для штуцера без подкладного кольца и 4-6 мм - для штуцера с подкладным кольцом (рис. 13.14).

Соединяемые детали скрепляются двумя прихватками длиной по 40-50 мм и высотой
4-6 мм в корневой части шва. Прихватки следует располагать в диаметрально противоположных местах. Для прихватки используются электроды Э-11Х15Н25М6АГ2 диаметром 3 мм; сварка выполняется током 80-90 А без подогрева.

 

 

 

Рис. 13.14. Собранный под сварку стык без подкладного кольца (а) и с подкладным кольцом (б)

 

13.7.4. Угловой шов выполняется многослойным способом кольцевыми валиками шириной 12-16 мм, высотой 4-6 мм. Режимы сварки постоянным током обратной полярности следующие: сила тока 80-90 и 110-120 А при сварке электродами Э-11Х15Н25М6АГ2 диаметром 3 и 4 мм соответственно (табл. 13.3). Примерная последовательность сварки кольцевых валиков и размеры катетов углового шва штуцера показаны на рис. 13.15. Сварку углового шва следует проводить без подогрева свариваемых деталей. Максимальная допустимая температура самонагрева деталей при сварке составляет 100°С (на расстоянии 20 мм от края свариваемого шва). Послесварочный термический отдых не проводят.

 

 

Рис. 13.15. Примерная последовательность сварки кольцевых валиков и размеры катетов углового шва штуцера -100. Сварка и наплавка выполнены аустенитными электродами

 

13.7.5. Наружная поверхность углового шва должна быть обработана механическим способом абразивным инструментом (шлифованием) до получения плавного сопряжения поверхности шва с усиливающей наплавкой и основным металлом штуцера и коллектора (рис. 13.16).

13.7.6. Сварное соединение подвергают радиографическому контролю и макроанализу поверхности шва и наплавок; их качество оценивается по нормативным требованиям РД 34 15.027-93 для сварных соединений перлитных сталей.

 

 

Рис. 13.16. Форма углового шва с наплавками после механической обработки (шлифования).

Угловой шов и наплавки выполнены аустенитными электродами

 

14. КОНТРОЛЬ КАЧЕСТВА СВАРНЫХ СОЕДИНЕНИЙ

 

14.1. При проведении ремонта применяют следующие методы контроля.

14.1.1. Визуальный и измерительный контроль - для выявления недопустимых макродефектов и несоответствия геометрических параметров соединений. Визуальный контроль проводят после травления 15% водным раствором азотной кислоты поверхности перлитного металла (12Х1МФ, 15Х1М1Ф, 20ХМФЛ, 15Х1М1ФЛ, 09Х1МФ, 09Х1М) и травления аустенитного металла в соответствии с требованиями ОСТ 34-70-690-84.

14.1.2. Магнитопорошковая дефектоскопия (МПД). Контроль проводят вместо визуального анализа для выявления недопустимых макродефектов и выполняют в соответствии с ГОСТ 21105 и ОСТ 108.004.109-80.

14.1.3. Стилоскопирование. Спектральный анализ предназначен для подтверждения требуемого содержания легирующих элементов в металле швов и наплавок. Контроль проводят в соответствии с РД 34 10.122-94.

14.1.4. Контроль измерением твердости металла швов (и наплавок) выполняют с помощью переносных твердомеров.

14.1.5. Ультразвуковой контроль (УЗК) - предназначен для выявления недопустимых макродефектов (например, трещин) в сечении сварных швов, наплавок и основного металла. УЗК выполняют в соответствии с требованиями ГОСТ 14782-86.

14.1.6. Радиографическая дефектоскопия - предназначена для выявления недопустимых макродефектов в сечении металла и применяется в случаях технической невозможности использования УЗК. Правила проведения осуществляются по ГОСТ 7512-82 и РД 34 10.068-91.

14.1.7. Микроанализ с помощью реплик или сколов проводят с целью установления характера микроповрежденности поверхности металла (порами ползучести, микротрещинами и др.) соединений перлитных сталей 12Х1МФ, 15Х1М1Ф и подобных.

Реплики могут быть изготовлены из прозрачного полистирола, рентгеновской пленки на колоксилиновой основе, магнитной ленты, целлулоида или полимерных сжиженных материалов. Для размягчения поверхности твердых заготовок под реплики используют ацетон или бензол.

Методика контроля: место обследования предварительно шлифуют, полируют и травят 4% раствором азотной кислоты в этиловом спирте. На заготовку под реплику площадью 10-20 мм2 наносят несколько капель ацетона и после 20-30 с выдержки заготовка размягченной поверхностью прижимается к месту обследования на 2-3 с, после чего выдерживается без нагрузки 20-30 мин (рис. 14.1). Готовую реплику, на которой зафиксирован рельеф исследуемого участка металла, анализируют с помощью оптического микроскопа (рис 14.2) при 500-1000-кратном увеличении.

Рис. 14.1. Последовательность операций получения реплики:

а - нанесение капли растворителя из пипетки на поверхность заготовки;

б - заготовка с размягченной поверхностью (РП);

в - прижатие заготовки с помощью перчатки (П) к контролируемой поверхности металла;

г - готовая реплика (Р) с поверхности металла

 

14.2. Нормативные требования при оценке качества металла сварных соединений.

14.2.1. Нормы допустимых макродефектов при визуальном контроле, магнитопорошковой, ультразвуковой и радиографической дефектоскопии, контроле измерением твердости и стилоскопировании соответствуют требованиям РД 34 15.027-93 для сварных соединений перлитных сталей.

Рис. 14.2. Схема расположения исследуемого объекта - реплики на оптическом микроскопе:

1 - полистироловая реплика;

2 - диафрагма столика микроскопа;

3 - стальная полированная пластинка;

4 - ход луча освещения;

5 - отраженный луч света;

6 - окуляр микроскопа

 

14.2.2. Допустимой микроповрежденностью металла, оцениваемой при микроанализе с помощью реплик, является отсутствие микротрещин, цепочек пор ползучести или скоплений пор любых размеров и наличие единичных пор размером до 1-2 мкм (конкретный размер и количество допустимых пор указаны в разделах настоящего РД).

14.3. Объемы и периодичность эксплуатационного контроля.

14.3.1. Отремонтированные сварные соединения (и новые штуцерные соединения, сваренные без термической обработки) сразу подвергают 100% контролю по п.14.1 методами дефектоскопии и анализа с учетом типа конкретных изделий (см. разделы 6-13 настоящего РД).

14.3.2. Периодичность эксплуатационного контроля отремонтированных стыковых сварных соединений паропроводных труб указанными в п. 14.1 настоящего РД методами составляет каждые 5-6 лет эксплуатации, кроме стилоскопирования и измерения твердости, которые выполняют один раз в процессе проведения ремонтных операций; для стыковых сварных соединений фасонных элементов периодичность контроля - 2 года эксплуатации; для тройниковых сварных соединений и штуцерных соединений труб -100 мм с коллекторами периодичность контроля - каждый 1 год эксплуатации. Места приварки штуцеров труб поверхностей нагрева к коллекторам котлов контролируют при эксплуатации только путем внешнего осмотра поэтапно: первый раз - в ближайшую кампанию капитального ремонта котла и далее - согласно требованиям РД 34 17.421-92.

14.3.3. Положительные результаты обследования являются основанием для продления ресурса отремонтированных сварных соединений (и штуцерных соединений, сваренных без термической обработки).

 


ПРИЛОЖЕНИЯ

 

Приложение 1

(справочное)

 

Характер и причины повреждений стыковых сварных соединений паропроводов из хромомолибденованадиевых сталей в процессе эксплуатации

 

Вид повреждения

Период зарождения и развития повреждения

Зона повреждения

Номер рисунка

Металлографический признак повреждения

Причины повреждения

1

2

3

4

5

6

1. Трещины хладно- ломкости - хрупкие трещины при умеренных температурах до 100-150°С

Во время гидроиспытаний и пусков - остановок энерго-оборудования при номинальных напряжениях ниже предела текучести стали

Трещины зарождаются в металле шва или околошовной зоне от концентраторов напряжений (подрезов, непроваров, шлаковых включений, сварочных трещин и т.п.), развиваются по всем зонам сварного соединения; ориентированы вдоль и поперечно шву

П1.1,а

Транскристаллитный характер и ветвистость трещин

Технологические причины: нарушение оптимального технологического режима сварки и термической обработки (недостаточный подогрев при сварке, недоотпуск сварного соединения или отсутствие термообработки). Порог хладноломкости металла смещен в сторону положительных температур

2. Хрупкие трещины из-за провала длительной пластичности (локальные повреждения)

При эксплуатации в условиях ползучести выше 500°С и номинальных напряжениях ниже допускаемых

В околошовной зоне (ОЗ); зарождаются, как правило, и развиваются с наружной поверхности в виде кольцевых трещин вдоль шва на расстоянии до 1 мм от линии сплавления. В металле шва трещины на участках с крупнозернистой структурой (кристаллитов); ориентированы произвольно

П1.1,б

Межкристаллитный характер с четкой ориентировкой по границам аустенитных зерен; гладкие края. Повреждение на ранней стадии выражено в виде микропор и клиновидных трещин

Технологические причины: нарушение рекомендуемых оптимальных режимов сварки (недостаточный подогрев, отсутствие подогрева и т.п.) и термической обработки (недоотпуск, отсутствие отпуска). Твердость металла шва из-за дисперсионного охрупчивания превышает допустимые нормы; недопустимо низкая ударная вязкость металла шва и ОЗ

3. Трещины по "мягкой прослойке" металла

При эксплуатации в условиях ползучести (выше 510°С) и номинальных напряжений выше допускаемых

В зоне термического влияния (ЗТВ) соединения в виде кольцевой трещины с наружной поверхности вдоль шва на расстоянии 2-4 мм от линии сплавления, в металле шва на участках мелкого зерна и неполной перекристаллизации, имеющих пониженное сопротивление ползучести

П1.1,в

Повреждения по границам мелких зерен с многочисленными надрывами - микро- трещинами, сопровождающих магистральную трещину с окисленными краями. Повреждение на ранней стадии выражено в виде микропор размером 0,1- 0,3 мкм и далее в виде пор ползучести размером 1-3 мкм и более преимущественно по границам зерен

Эксплуатационные и конструкционные причины; действие рабочих напряжений выше допустимых из-за дополнительных изгибающих нагрузок (защемление участка паропровода, нарушение состояния опор и т.п.) и неудовлетворительное конструктивное оформление сварных соединений (концентрация напряжений в соединениях разнотолщинных трубных элементов). Дополнительные технологические причины: повышенное тепловложение при сварке (недопустимо высокие температура подогрева и сила тока при сварке)

4. Трещины усталости

Возникают при действии переменных напряжений с амплитудой выше допускаемого уровня (циклические термические или механические напряжения)

Трещины термической усталости: развитие в зонах конструктивных и технологических концентраторов напряжений. Ориентированы в угловых швах поперечно шву, в стыковых швах в поперечном и продольном направлениях и, кроме того, в виде сетки трещин, сопровождающих магистральную трещину. Усталостные трещины (механической усталости) развиваются поперечно и продольно шву

П1.1,г

Транс- кристаллитный характер

Эксплуатационные причины: трещины термической усталости из-за нарушения проектных условий эксплуатации (забросы воды, недопустимо высокие скорости прогрева и т.п.); трещины усталости (механического воздействия) из-за нарушения работы опор. Конструкционные причины: наличие концентраторов напряжений, недостаточная жесткость соединений тонкостенных трубных элементов и т.п.

 

 

 

 

 

 

           
Разместить сайт в каталоге
Разместить статью в каталоге