РД 153-34.1-39.603-99 стр.5 № пп

 

Таблица 8. Ведомость дефектов

 

№ пп

Дата

Вид ремонта

Наименование арматуры

Завод-изготовитель

Шифр

Материал

Рабочая сила

Наименование узлов и деталей, подлежащих замене или ремонту

Номера детали и чертежа

Количество деталей

Описание дефектов узлов и деталей

Перечень работ, выполняемых при ремонте

Наименование

Марка, сорт, сечение

Масса, кг

Слесари

Станочники

 

 

 

 

 

 

 

 

 

Норма-ч

Разряд работы

Норма-ч

Разряд работы

 

5. ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К КАПИТАЛЬНОМУ

РЕМОНТУ АРМАТУРЫ

 

5.1. Организация капитального ремонта

 

5.1.1. Сдача арматуры в ремонт и приемка ее из ремонта осуществляются в соответствии с РДПр 34-38-030-92 [28].

5.1.2. Все материалы и полуфабрикаты, применяемые при изготовлении и ремонте деталей и узлов арматуры, должны соответствовать материалам, указанным в рабочей конструкторской документации или в настоящем Руководстве, и удовлетворять требованиям Госгортехнадзора России.

5.1.3. Применение материалов, не указанных в конструкторской документации или в настоящем Руководстве, должно быть согласовано с разработчиками документации или специализированной организацией.

5.1.4. Материалы, применяемые при ремонте, должны иметь сертификаты заводов-поставщиков. При отсутствии сертификатов на материалы их качество должно быть удостоверено лабораторными анализами и испытаниями.

5.1.5. Все легированные стали, используемые для изготовления деталей, даже при наличии сертификатов поставщиков подвергаются дополнительному контролю методом спектрального анализа (стилоскопированию).

5.1.6. Электроды, применяемые при сварочных и наплавочных работах, должны соответствовать маркам, указанным в технической документации предприятия-изготовителя и настоящем Руководстве. Качество электродов должно быть подтверждено сертификатом. При выборе электродов можно руководствоваться справочным пособием [37].

5.1.7. При вырезке корпуса из трубопровода место резки должно располагаться за сварным стыком в сторону трубопровода на расстоянии не менее 20 мм. Обработку кромок патрубков корпуса и трубопроводов под сварку производить в соответствии с ОСТ 108.940.02-82, РД 34.15.027-93 [34] и РД 34.17.310-96 [33].

5.1.8. Торцы патрубков корпусов после ремонта должны быть перпендикулярны к его горизонтальной оси. Неперпендикулярность не должна превышать 1% внутреннего диаметра.

5.1.9. Порядок разборки арматуры устанавливается руководством по эксплуатации на данное изделие, которое должно поставляться на ТЭС вместе с арматурой или технологическими инструкциями, подготовленными специализированными организациями.

5.1.10. Методы контроля при дефектации основных деталей приведены в разд. 4.4.

5.1.11. Контроль качества заварки и наплавки необходимо производить в объеме 100% в соответствии со следующей нормативно-технической документацией:

– визуальный контроль — РД 34.15.027-93 [34];

– цветная дефектоскопия — ОСТ 34.42.545-81;

– ультразвуковая дефектоскопия — ОСТ 108.004.108-80;

– магнитопорошковая дефектоскопия — ОСТ 108.004.109-80;

– рентгеновская дефектоскопия — ОСТ 108.004.110-87;

– гидроиспытания — РД 34.15.027-93 [34].

Допускается применение других способов обнаружения дефектов, если эти способы освоены предприятиями, производящими ремонт, и включены в нормативные документы предприятия, утвержденные в установленном порядке.

5.1.12. Последовательность, объем и метод контроля определяются требованиями чертежей и руководства по эксплуатации.

5.1.13. При визуальном контроле особое внимание следует уделять местам, наиболее подверженным коррозионному, эрозионному и механическому износу (уплотнительные поверхности затвора, рабочие поверхности деталей регулирующих органов, цилиндрические поверхности шпинделей в зоне контакта с сальниковой набивкой, резьбовые детали и т.д.). В сомнительных случаях при контроле следует использовать лупы 7 — 10-кратного увеличения по ГОСТ 25706-83 [27].

5.1.14. Дефектация деталей арматуры с резьбовыми поверхностями и крепежных изделий производится визуальным контролем и калибрами. В сомнительных случаях следует произвести ультразвуковую дефектоскопию крепежных изделий.

Детали (кроме корпусных ) и крепежные изделия подлежат замене при срыве или смятии более одной нитки на одной из сопрягаемых поверхностей или при износе резьбы по среднему диаметру, превышающем пределы допусков по ГОСТ 16093-81 [19] и ТУ 26-07-418-87.

5.1.15. По результатам дефектации детали арматуры сортируются по группам:

детали, не имеющие повреждений, влияющих на функционирование изделия, сохранившие свои первоначальные размеры или имеющие износ в пределах поля допусков по чертежу;

детали, имеющие повреждения и износ, которые могут быть устранены на имеющейся ремонтной базе;

детали, подлежащие замене, так как имеющиеся на них повреждения и износ исправлению не подлежат.

5.1.16. Подлежат замене независимо от технического состояния асбографитовые сальниковые набивки, гребенчатые и паронитовые прокладки, кольца сальниковые войлочные, шплинты.

 

5.2. Способы устранения дефектов отдельных деталей

 

5.2.1. На необрабатываемых поверхностях литых корпусов и крышек допускаются без исправления:

– отдельные раковины в любом количестве и расположении (кроме патрубков) диаметром не более 5 мм для всех толщин стенок;

– скопление раковин на концах патрубков на площади не более 100х100 мм, если их размеры не превышают 5 мм по диаметру и 3 мм по глубине, при расстоянии между ними не менее 25 мм и общем количестве их не более 4 шт.;

– отпечатки пневматических зубил глубиной до 2 мм, сглаженные шлифовальной машинкой.

5.2.2. На обрабатываемых поверхностях основного металла корпусных деталей допускаются без исправления следующие дефекты, кроме трещин:

– на сопрягаемых наружных или внутренних, но ненапряженных поверхностях — одиночная кольцевая риска глубиной не более 0,2 мм;

– на несопрягаемых наружных поверхностях — не более двух кольцевых рисок глубиной до 0,3 мм;

– на несопрягаемых внутренних поверхностях — вырывы, появившиеся при сверлении отверстий диаметром до 20 мм (не более двух); повреждения поверхностей в виде задиров в отверстиях диаметром более 20 мм — до 5% поверхности. Местные выборки после удаления дефектов глубиной до 5% толщины стенки допускается не заваривать.

5.2.3. На необрабатываемых поверхностях литых корпусов и крышек, а также на обрабатываемых поверхностях основного металла корпусных деталей не допускаются следующие дефекты:

– трещины любых размеров и расположений;

– дефекты со сквозными раковинами любых размеров и расположений;

– дефекты, превышающие по величине и количеству дефекты, указанные в п. 5.2.1.

5.2.4. Дефекты, подлежащие исправлению сваркой, удаляются механическим способом. Стенки выборки должны быть пологими, угол разделки должен быть не менее 10°. Поверхность разделанного углубления не должна иметь острых углов и заусенцев. Основание выборки на всем протяжении должно иметь плавное очертание окружности.

5.2.5. Исправления дефектов корпусных деталей (но не более четырех исправлений на одну деталь) путем заварки одного и того же дефектного места разрешается производить не более двух раз.

5.2.6. Заварку дефектных мест следует производить в соответствии с РД 34.15.027-93 [34], контроль заваренных мест — в соответствии с РД 2730.940.102-93 [30].

5.2.7. При обнаружении дефектов в сварном шве корпуса необходимо произвести УЗД всего шва и прилегающего к нему основного металла шириной 20 мм с двух сторон от границы по всей длине шва.

5.2.8. На поверхностях кованых и штампо-сварных корпусов допускаются без зачистки отдельные местные вмятины, риски и тому подобные дефекты, если глубина их залегания не превышает 2,5% толщины стенки.

5.2.9. Исправление дефектов в сварных швах и выборка металла в местах со сквозными трещинами с последующей заваркой следует производить в соответствии с РД 34.15.027-93 [34].

5.2.10. Дефекты посадочных мест фланцевых соединений корпуса с крышкой глубиной до 1,5 мм допускается устранять проточкой; дефекты, превышающие 1,5 мм, следует устранять наплавкой с последующей механической обработкой. Предельные отклонения и шероховатость поверхности посадочных мест должны соответствовать требованиям чертежей.

 

5.3. Требования к деталям, поступающим на сборку

 

5.3.1. Размеры, допуски и шероховатость поверхностей деталей после ремонта или изготовления должны соответствовать указаниям конструкторской или ремонтной документации.

5.3.2. Резьба всех деталей (за исключением наружной трапецеидальной) должна соответствовать среднему классу точности по ГОСТ 16093-81 [19]; трапецеидальные резьбы шпинделей выполняются со степенью точности 7е, а для резьбовых втулок — 7Н согласно требованиям ГОСТ 9562-81 [16].

5.3.3. Шероховатость поверхности профиля резьбы, если она не указана в чертеже детали, должна быть для шпилек и гаек фланцевого соединения, откидных болтов и трапецеидальной резьбы шпинделя и резьбовой втулки не более Rz 20, d в остальных случаях — Rz 40.

5.3.4. Профиль резьбы на деталях должен соответствовать требованиям ГОСТ 8724-81 [14] и ГОСТ 24705-81 [26].

5.3.5. Крепежные детали фланцевого соединения задвижек должны отвечать требованиям ГОСТ 20700-75 [23], группа качества — в зависимости от условий работы крепежных изделий. Остальные крепежные детали должны отвечать требованиям ГОСТ 1759.0-87 [4], ГОСТ 1759.1-82 [5], ГОСТ 1759.2-82 [6], ГОСТ 1759.3-83 [7], ГОСТ 1759.4-87 [8] и ГОСТ 1759.5-87 [9].

5.3.6. Разница между твердостью резьбовых поверхностей шпилек и гаек должна быть не менее 12 НВ, при этом твердость гайки должна быть ниже твердости шпильки.

 

6. ТЕХНОЛОГИЧЕСКИЕ ОПЕРАЦИИ РЕМОНТА АРМАТУРЫ

 

6.1. Притирка

 

6.1.1. Общие требования

Плотность (непроницаемость уплотнительных поверхностей) достигается притиркой, которая представляет собой процесс чистовой обработки уплотнительных поверхностей, при котором зерна абразивного материала свободно распределены в виде пасты или суспензии. Инструментом служит притир, на поверхность которого наносится паста или суспензия.

К деталям арматуры, подлежащим притирке, предъявляются следующие требования:

– чистота поверхности не ниже Rа = 0,08 мкм;

– плоскостность и прямолинейность поверхности — в пределах 80 — 90% площади, проверяемой плитой на краску;

– отсутствие на подлежащей притирке поверхности забоин, вмятин, царапин глубиной более 0,2 мм.

 

6.1.2. Притиры

Форма притира должна быть зеркальным отображением обрабатываемой поверхности. Точность обрабатываемой поверхности определяется точностью притира. Однако форма притира непрерывно изменяется в процессе притирки, поэтому он должен быть жестким и незначительно изнашиваться под действием паст. Материал должен отличаться однородностью состава, структуры и твердости, так как это оказывает существенное влияние на точность получаемой поверхности и на производительность процесса.

На ЧЗЭМ для притирки деталей арматуры применяются притиры, изготовленные из ферритно-перлитного чугуна СЧ 15-32 с твердостью 163-190 НВ. Материал притира должен иметь однородную структуру. Материал, используемый для изготовления притира, должен быть подвергнут естественному или искусственному старению.

 

6.1.3. Притирочные материалы

Самыми распространенными притирочными материалами являются: корунд, электрокорунд, карбид кремния и карбид бора.

По размерам зерна притирочные порошки делятся на три группы:

– шлифпорошки зернистостью 5—3 — для грубой доводки;

– микропорошки от М28 до M14 — для предварительной доводки;

– микропорошки от M10 до М5 — для окончательной доводки.

Кроме порошков для притирки применяются абразивные пасты на основе упомянутых выше порошков.

В целях повышения производительности притирки, особенно когда ремонт производится без вырезки из трубопровода, применяются синтетические алмазы. Синтетические алмазы выпускаются в виде порошков и паст. Пасты из синтетических алмазов применяются для окончательной операции — доводки до 0,16—0,06 чистоты. Использование алмазных паст взамен паст, изготовленных на базе электрокорунда, карбида кремния, окиси хрома, дает возможность получить увеличение производительности в 2—3 раза, производить обработку твердых и хрупких материалов (азотированных поверхностей, твердых сплавов).

Для обработки уплотнительных поверхностей находят применение пасты из эльбора. При одинаковых технологических условиях обработки уплотнительных поверхностей стойкость эльборовых паст в 1,5-2 раза выше стойкости паст из синтетических алмазов и в 3-5 раз выше стойкости обычных абразивных паст. В первую очередь этими пастами следует производить притирку уплотнительных поверхностей деталей запорных органов главных паровых задвижек, главного и импульсного предохранительных клапанов и некоторой другой арматуры, установленной на наиболее ответственных узлах энергооборудования. Кроме того, применение паст из эльбора эффективно в тех случаях, когда оборудование остановлено для аварийного ремонта и его необходимо как можно скорее ввести в работу.

 

6.1.4. Режимы притирки и доводки

Производительность процесса доводки и достигаемая при этом шероховатость поверхности зависят не только от абразивного инструмента, но и от технологии притирки: скорости перемещения притира, удельного давления между притиром и деталью, способа подачи доводочного материала.

С увеличением скорости перемещения притира до 4 м/с производительность притирки возрастает прямо пропорционально скорости. При притирке шаржированными притирами дальнейшее увеличение скорости приводит к чрезмерному нагреву трущихся поверхностей и снижению точности деталей. При притирке абразивной суспензией увеличение скорости снижает производительность вследствие большой центробежной силы, которая стремится отбросить абразивную суспензию от центра притира. Процесс протекает ненормально, притиры начинают вибрировать и перемещаться рывками, что отражается на производительности и точности притирки.

Производительность процесса тем больше, чем выше давление между притиром и деталью. Эта зависимость сохраняется до давления 0,3 МПа. При большем давлении происходит быстрое раскалывание и истирание абразивного зерна и нагревание трущихся поверхностей, что приводит к деформации деталей. Чрезмерное увеличение давления может также вызывать задиры на поверхности притира.

Способ подачи притирочного материала в зону контакта притира с обрабатываемой поверхностью влияет на производительность притирки. Наибольшая производительность достигается при непрерывной подаче суспензии в центральную часть притира. Производительность снижается в 2,5-3 раза при предварительном шаржировании поверхности притира абразивным порошком.

Припуск на предварительных притирочно-доводочных операциях составляет в среднем 0,02-0,05 мм, в некоторых случаях может быть доведен до 0,1-0,2 мм, на окончательных операциях 3—5 мкм.

В качестве смазочных жидкостей при доводке применяются керосин и олеиновая кислота. Оптимальное количество олеиновой кислоты в смеси с керосином должно составлять 2,5%.

Для предотвращения завалов и перекосов на притираемой поверхности необходимо правильно распределить усилия, прилагаемые к детали, а также определить центр тяжести детали.

 

6.2. Повышение качества уплотнительных поверхностей

методом пластической деформации

 

При абразивной притирке уплотнительных поверхностей хотя и достигается чистота поверхности и прямолинейность, однако в процессе микрорезания на поверхности остаются мельчайшие следы от абразивных материалов. Иногда происходит внедрение крупных абразивных зерен в поверхность, что может привести к ее задиранию.

Для устранения указанных дефектов и для повышения прочности рабочих поверхностей при ремонте арматуры применяется метод пластической деформации уплотнительных поверхностей путем их обкатки роликами или пружинящими шариками, а также алмазное выглаживание.

При обкатке достигается сочетание высокой чистоты с упрочнением поверхностного слоя, что повышает механические свойства деталей: повышаются твердость поверхностного слоя и его износостойкость, предел текучести и особенно предел усталости.

Качество обкатки зависит от физико-механических свойств и состояния обрабатываемой поверхности, режимов обкатки, конструкции приспособления и ролика.

Обкатка выполняется с помощью свободно вращающихся (одного или нескольких) роликов, приводимых в соприкосновение с обрабатываемой поверхностью под давлением. Обкатке подвергаются металлы, имеющие твердость не более 400 НВ. Эффективность обкатки снижается начиная с твердости 280 НВ. С повышением пластичности металла и снижением его твердости повышается глубина и степень наклепа, улучшается чистота поверхности и снижаются остаточные напряжения сжатия в поверхностном слое.

Большое влияние на качество обкатки оказывает состояние исходной поверхности: она не должна иметь микротрещин, рисок, вырывов.

Обкатка цилиндрических поверхностей выполняется на токарных и револьверных станках, а плоских — на строгальных. Число роликов выбирается в зависимости от обрабатываемой заготовки и назначения обкатки. Обкатка одним роликом применяется для обработки жестких заготовок, более эффективна обкатка двух-, трех- и четырехроликовыми накатками. Твердость рабочих поверхностей роликов должна быть не ниже 58 HRC. Ролики изготавливаются из сталей марок X12, Х12М, ХВГ, У10 или У12. Для повышения износостойкости роликов на их поверхность рекомендуется нанести твердый сплав.

На качество обкатки влияет подача ролика. Малые подачи обеспечивают лучший результат. Наиболее эффективны первые 3 прохода. Увеличение числа проходов может привести к перенаклепу и увеличению шероховатости поверхности.

Обкатку с цилиндрическим роликом рекомендуется производить с подачей 0,4—0,8 мм/об.

Обкатка роликами нашла применение на некоторых арматурных заводах. На ПО "Сибэнергомаш" производится обкатка шпинделей паровых задвижек, на ЧЗЭМ применяется шариковая обкатка поверхностей рубашек поршневых камер предохранительных клапанов. На этом же заводе резьбовыми роликами производится накатка резьбы шпилек и корпусов вентилей Dу 10—20 мм. На этих же вентилях вместо малоэффективной и плохо контролируемой притирки уплотнительных поверхностей производится уплотнение поверхностей с помощью пуансона. Нижний конец пуансона выполнен в виде конуса с углом, соответствующим углу уплотнительного пояска вентиля, а его цилиндрические поверхности играют роль направляющих. Уплотнение осуществляется ударом по верхнему торцу пуансона молотком. В результате получаются высокая чистота и твердость уплотнительного пояска.

Один из методов отделочно-упрочняющей обработки пластическим поверхностным деформированием заключается в деформировании обрабатываемой поверхности скользящим по ней инструментом — выглаживателем с закрепленным в оправке кристаллом алмаза. При этом неровности поверхности, оставшиеся от предшествующей обработки, сглаживаются частично или полностью и поверхность приобретает зеркальный блеск.

В результате выглаживания повышается твердость поверхностного слоя, износостойкость и сопротивление задираемости. Высокая твердость алмаза дает возможность обрабатывать почти все металлы, поддающиеся деформации, как мягкие, так и закаленные до твердости 60—65 HRC.

На качество выглаженной поверхности и на стойкость инструмента большое влияние оказывает при выглаживании смазочно-охлаждающая жидкость. Применение индустриального масла снижает износ алмазного выглаживания в 5 раз по сравнению с выглаживанием без смазки. Оптимальная подача, обеспечивающая требуемое качество поверхности, находится в пределах 0,02—0,06 мм/об — при выглаживании закаленных сталей, 0,02—0,08 мм/об — незакаленных сталей и 0,02—0,15 мм/об — бронзы.

 

 

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *